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Abstract. The R-matrix method is applied to the one-dimensional oscillator group. The
resulting quantum groups and dual algebras are characterized. It is shown that both bosonic
and fermionic dual algebras occur and that true deformations of the bosonic and fermionic
oscillator algebras are obtained.

Résune. La méthode de la matric& est appliqée au groupe de 'oscillate@r une dimension.

Les groupes quantiques et aliyes duales asséeis sont alors carasiss. Nous montrons qu'il
apparit des algbres duales de type bosonique et fermionique. De plus, nous obtenons de vraies
déformations des aéhres de I'oscillateur bosonique et fermionique.

1. Introduction

The R-matrix method [1-5] is used to generate quadratic algebraic relations between the
basic elements of a given group, which are compatible with the coproduct as derived
from the group structure. We recall briefly how to apply this method. Ldie a faithful
representation of;, then we get the desired quadratic relations in writing

RTiT, = TLTiR (1.1)

whereasusudl, =T Q I, L =1QT.

The external consistency of the algebra thus defined is ensuRdsdtisfies the well
known quantum Yang-Baxter equation (QYBE).

This program has been extensively applied to semi-simple group where the QYBE is
a necessary condition. In particular fgf(2), all the R-matrices verifying QYBE have
been given by Hietarinta [6]. Two classes Rfmatrices appear: the first contains matrices
continuously related to the identity matrix and the second matrices continuously related to a
diagonal matrix with at least a negative element. The interesting object is actually the dual
algebra which plays the same role with respect to the quantum group as the Lie algebra for
the group. In the situation referred to above, the corresponding dual algebras can be termed
bosonic and fermionic quantum algebras.

Majid [7] indicated that theR-matrix method could be applied to non-semisimple groups
and, in particular, to the one-dimensional Heisenberg and oscillator groups. In a previous
paper [8], we thoroughly considered the case of the Heisenberg group. It was shown that in
this case we have to replace QYBE by a weakened version, insofar as a matrix commuting
with T ® T ® T was not necessarily a multiple of the identity, but no fermionic structure
appeared.
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In the present paper, we extend the application to the one-dimensional oscillator group.
Rather surprisingly, we get a large number of matrices, between which we distinguish
two families continuously related to diagonal matrices, the identity matrix and one with
a negative element. Thus by duality we recover in analogy withgtti2) case [9, 10]
algebras which can be called bosonic and fermionic oscillator quantum algebras. Besides,
as in the case of the Heisenberg group [8], we have to verify a weakened version of QYBE
for the same reason, but in contrast, it happens that for each concerned deformed algebra,
we can find aR-matrix verifying the strict QYBE.

Our paper is organized as follows. in section 2, we discuss the propertiesRfrtizdrix
and we give the algebraic relations defining the various types of quantum groups as well in
the bosonic as in the fermionic case. In section 3, we derive the bosonic dual algebras and
in section 4, the dual fermionic algebras which are indeed new algebraic deformations of
gl(1/1) compared with the results of Burdét al [10]. In section 5, we discuss these results
from an algebraic point of view; it is shown that by a convenient change of generators,
some of these algebras are actually isomorphic to the usual oscillator algebra, but even in
this case, the deformation can be read on the coproduct, so that the deformation process is
meaningful in the category of bialgebras. Appendices A, B, C and D contain many technical
devices needed for performing the various computations.

2. Bosonic and fermionic oscillator quantum groups

Let us start with a three-dimensional faithful matrix representation of the oscillator group
1 o B
T=|10 n vy (2.1)
0 0 1
wherea, B8, n, y are generators of an algeb#a provided with a structure of Hopf algebra
where the comultiplication implied by the oscillator group law is given by
Ay =n®y+y®1
AB=1QB+BR@1+a®y

An=n®&m.

To construct the quantum oscillator group we use systematicallyRtingatrix approach
[1-5]. In that case th&-matrix is a 9x 9 matrix{r;;, i, j = 1,..., 9} defined by equation
(1.1).

It is clear that, in particular, ifR is the identity matrix, the equation (1.1) gives the
commutative bialgebra far, 8, n, y. But there exists another diagordmatrix compatible
with the coproduct (2.2) for which we get a non-commutative (non-deformed) bialgebra.
Indeed, we havek = diag(1,1,1,1,—-1,1,1,1, 1) and the bialgebra is defined by

{a,n} =0 {y,n}=0 a’=0 y?=0

[, 8] =0 [B.v]=0 [, ] =0 [B.n] =0
where{ , } denotes the anticommutator.

So here theR-matrix approach allows us to deal with deformations of two types of
bialgebras. We want to identify them with bosonic and fermionic quantum oscillator groups.
Indeed, it will be proved in what follows that their dual algebras are deformations of the
usual bosonic and fermionic oscillator algebras, respectively.

2.2)

(2.3)
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Starting from this point of view and setting to zero every linear relation between the
generators, we have to impose on fnatrix some limiting conditions which finally result
in the following set of quadratic relations:

ras(af — Ba) = rsea® — risny — (r13 — ras — rag) + rig(1 — 1)
r33(By — yB) = —rasy® + rsgna — (ra6 + rag — r3e)y — rae(1 — 1)
ra3(ay — ya) = —rasny + rsgna

r33(Bn — nB) = rasny — rseatn (2.4)

ragna + (r11 — raz — rss)an = ras(n — n°)
r3any + (ri1— ras — rss)yn = rsg(n — n°)
(r11 — rss)a® = ris(1 — n?) + (ras + ras)a

(r11 — rss)y? = rso(1 — n?) + (rsg + rsg)y.
To ensure the consistency of this set of equations, we get the relation
(r11 — rss)(r11 — 2rz3 — rss) = 0. (2.5)

In the particular case whergs = 0, we have no relation between the generators insofar
as we add the conditions
15 = I'1p = 18 = F25 = I'29 = I'45 = I'49 = I'sg = I'sg = rs5g = 0
(2.6)
r3g = r26 + 128 ra6 = r13 — 1'26.
The family of correspondingk-matrices is denoted bR, and said to belong to the zero

type.
If now we assumersz # 0, we have to distinguish two cases which we consider

separately in what follows.

2.1. The bosonic casesg=r11

Again requiring internal consistency, we must have

rig = —T16 ra5 = —T25 r49 = —T29 rsg = —T's6 ris=rs9 =0 (2.7)
and, furthermore, Jacobi’s identity gives

rasrse = 0 ra5(r13 — ra26 — rag) = 0 rs6(rae + r2s — rag) = 0. (2.8)
So two distinct types of bosonic oscillator quantum groups appeatr:

(1°) Type I: rs=0 139 = a6 + I'28.
(2.9)
(20) Type ll: rp5=0 rse = 0.
The casesg = 0, rqg = r13 — 126 is identical to the type | after the change of generators
o < y. Takingrzz = 1 and setting

p = —ri3+ 12+ rae q =726+ 728 — 39
(2.10)
a=rsg b=rig Cc=rog
the commutation relations are

[a,ﬂ]:aaz—i-pa—i-b(l—n) [a,n] =0
[a, y] = aan [B,n] = —aan (2.11)
[y.ml=—-am*—n  [B.¥]=—qy —cd—n).
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Type | corresponds tg = 0, whilst type Il corresponds ta = 0.
The corresponding matriR can be written as

R = {{r11,0,713,0,0, b, r17, —b, r1g},
{0,1,0,r11 — 1,0, rze, 0, 128, c},
{0,0,1,0,0,0,r11 — 1,0, —q + ro6 + 128},
{0,r12—1,0,1,0, p +r13 —r26, 0, —=p + r17 — ras, —c},
{0,0,0,0, r11,a,0, —a, 0},
{0,0,0,0,0,1,0,r11 — 1, O},
{0,0,r11—1,0,0,0,1,0,g + ri3+ riz — ras — ras},
{0,0,0,0,0,m11—1,0,1, 0},
{0.0,0,0,0,0,0,0, ryy})}. (2.12)

2.2. The fermionic casess =13 — 2r33
Here internal consistency gives

ri6 = T18 = I'a5 = I'29 = I'45 = ra9 = rsg = rsg = 0 (2.13)
and

r15(r13 — r26 — r46) = 0 r59(r26 + 128 — r39) = 0. (2.14)
As in the previous casegzsz = 1 and we take, together with (2.10),

7=r15 X = rsg (2.15)
so that the constraint (2.14) is written

pz=0 gx =0. (2.16)

As before, due to the invariance by the change~> y, we derive only three types of
fermionic oscillator quantum groups:

(1°) Type l: p=q=0
(2°) Type ll: g=2z=0 (2.17)
(3°) Type lll: x =z =0.

The algebraic relations are now
{o,n} =0 ly,n}=0  o*=31z(1-n% y?=3x1—n%
[a, Bl = zyn + pa [e.y] =0 (2.18)
[v. Bl = xan +qy [B.n] =0.
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The corresponding?-matrix can be written as

R={ {r11.0,r13,0,2,0,r17 0, rg},
{0,1,0,r11 — 1,0, r, 0, g, 0},
{0,0,1,0,0,0,r11 — 1,0, —q + r26 + rzs}.
{0,711 —1,0,1,0, p + r13—r26, 0, —p + r17 — rzs, O},
{0,0,0,0, 111 — 2,0,0,0, x}, (2.19)
{0,0,0,0,0,1,0,r11 — 1,0},
{0,0,r11—1,0,0,0,1,0,g + rig+ riz — rae — ragh
{0,0,0,0,0,r1—1,0,1, 0},

{0,0,0,0,0,0,0,0, r11}}.

We see that in each case tlRematrices contain more parameters than those appearing in
the structure relations (2.11) and (2.17). Moreorgr# 0 asR is non-singular.

As we already noted in [8], internal consistency is equivalent to a weak version of
QYBE in the following sense:

R12R13R23 = Rp3R13R12W

whereRj, R13, Ro3 have the usual meaning aMdis a matrix that commutes WitiQ 7 ®T,
which is not necessarily the identity matrix.

In analogy with what we did in [8], a generic matrtkk may be given. Such a matrix is
labelled byy = r1; — 1, the set(p, g, a, b, ¢) in case A and the sdlp, ¢, x, z) in case B,
characterizing the type of concerned quantum group. The other irrelevant parameters (not
involved in (2.11) and (2.17)) being taken equal to zero. The geredan be built in the
following way: if Ry, R, belong to the same type under the conditiar+ y, # 0, then
R is given equal toR1S~1R» where S is a convenient matrix in the s&,. This generic
R does not generally verify the QYBE, since the consistency of (2.11) and (2.17) does not
force W to be the identity. However, in the present case, it can be shown that for fixed
(p,q,a,b,c) or (p,q,x,z) there exists a non-generic matri satisfying QYBE where
obviously the irrelevant parameters are not necessarily zero.

3. Deformed bosonic oscillator algebras

In this section we construct the dual algebras of the type | and type Il bosonic quantum
groups given by the structure relations (2.11). As we know, these dual algebras are related
to the quantum groups as the universal envelopping algebras are related to the Lie groups.
In this way, we get various deformations of the usual oscillator algebra. In all cases, the
guantum oscillator group has the basis

Bratnmy" k,t,m,n eN. (3.1)
We define the generators of the dual algebra by

(A, B*a'y"y") = Sr08118n0

(B, Ba"n™y") = 8i18¢08n0

(C, BYa'n"y") = Sr08e0dnm

(H, Ba"n"y") = m808108n0.

(3.2)



4110 V Hussin et al

If P, P, are any two elements in this dual algebra, their product is defined by
(PLPy, Bra‘n™y™) = (PL® Pa, ABfan™y") (3.3)

where A means that we take the coproduct of subsequent factors. In applying this formula
to the generators defined in (3.2), we have to treat the two types of quantum oscillator
groups separately.

(2°) Type |

We set
A,Bk = Fi/'{,.v,t;r’,.v’,t’,u’ﬂrasnt ® ‘Br’as’nt’yu’
Ay" = Al 0"y @ yY

with summation over repeated indices. Taking into account

K !’ ’ ’
Aot = (E/)oz‘Z ® att )7‘z

Anm — nm ® nm

and systematically using the commutation relations (2.11), we get
£ ,
Aﬂkaénmyn — Ff.s,t;r’.s/,t/,u’ <£/> sz’v/ﬁraﬂrl 77terJruyv

®13r/a5/+€_[/nt/ Qgi;e_e’,m-}—e’(n)yu”‘i'v’ (34)

r,s,8
-

where the polynomial®)’,”* (n) are defined by

(v —asn)'n" = Q7" )y (3.5)
For any regular functiory () we have
A A
B.pfa' fayy" | = | B. By | f(D)
C C (3.6)

df
(H, pra’ fFay™) = Siobiodo g (D).
Using this formula systematically we are able to express the various commutators as
summations over the coefficient$ ... . .., A% ., which can be evaluated from recursion

formulae over them. The interested reader will find some indication as to how to proceed
in appendices A, B and C.

We finally get
[A,B]=[B,C]=[B,H] =0

—aC __
[C,H] = bF(B) + er -1 3.7)

[A. H] = A(1— abF(B)) — aHF'(B) + ﬁ(F”(B) —eh),
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Here the functionF (x) is given by

1 ey — piefe¥
Fx) = (1 + P2 1 )
0102 L1 — P2

01, p2 being the roots of the second-order equation

(3.8)

p%— pp+ab=0

pr=3(p+ VP —dab)  pr=(p Vo7 dab). 39

Let us remark that we have the following limits wheh goes to zero:

1
lim F(x)= " —1) -~
ab—0 p p

. err —1
lim F'(x) = (3.10)
ab—0
. 1 err —1
lim = (F'(x) — ) = _ L,
ab—0 ab p2 )4

This algebra will be discussed in more detail in the conclusion.

(2°) Type |l

Since only two commutators are different from zero, we get simpler formulae; indeed we
have

n e o
AV"=(n/>77mV" ®y

and the recurrence formula far% .. ..,
appendix A. Thus we start with

L\ (n , / ;o g e
r s+t t+m+n’, n—n r' s =t m ) u'+n
o Ba" "y Y ep « n 14

, IS easier to manage as it can be seen in

g/

and we obtain the same formal expressions as before for the various commutators in
performing the limit atz = O provided we note that

k €. m_,n _ 1k
A an"y" = F,'S’,;,,'S,J,,u(

Iimo(—a)“/ = 8u0. (3.11)

The evaluation of the various concerned coefficients can now be done easily (cf appendix B).
Finally we get

[A,B] =[B,C] =[B, H] =0

e(P+q)B_1
[A,Cl= ———
p+q
(C.H] = —C — b el (ePB—1+e—qB—1) (3.12)
’ p+q p q

erB reaB 1 erB_1
[A,H]=A—-c + .
pP+q q P
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This algebra is isomorphic to the usual oscillator algebra if we introduce

elrta)B _ 1
P
p+a
@b (eB_1 edl_1
O —C+b ( N ) (3.13)
p+a\ »p q

W—a_ (@B—1+ew3—1>
=A-—c
P+q q p

instead ofB, C, A. Therefore, at this stage, all the deformation parameters disappear. But,
if we consider the dual algebra as a bialgebra, these parameters are playing a defining role
in the coproduct of the generators; indeed we have

A =IQA+AReE
AB=I®B+BQ®I
AC=1QC+CQeb (3.14)

ers 1 el _1
—cC®

AH=IQH+HQI+bA®

so that the deformation process takes place in the category of Hopf algebras.

4. Deformed fermionic oscillator algebras

Since in the structure relations (2.17) defining the fermionic quantum gretipady? are
always given in terms ofy, a complete basis of the fermionic quantum groups is given by

BEntaly’ k,teN i j=0,1. (4.1)
We define generatord, B, C, H in the dual bialgebra by the relations

(A, B*n'a’y?) = 81081180

(B, B*n‘a'y’) = 81181080

(C, B*n'e’y") = 81081081

(H, B“na'y’) = t5i08i08j0-

As usual, the algebraic product of two elements in the dual algebra is given by

(XY, B n'a’y)) = (X @ Y, ABnaly)). (4.3)

4.2)

We consider the various cases separately.

(1°) Type |
We prove recurrently thahg* has the following form:
AB =Tl Brway! @B n'aly! + AL By @ By o Ty (4.4)

where summation is over repeated indices a#d., j + 1 are taken mod 2. Moreover from
the relation

Aﬂk+l Aﬂ A,B
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we get recurrence relation between the various coefficients useful for the computations to
follow (see appendix D).

Applying equation (4.3), we obtain the values &f,[B], [ B, C], [B, H], [A, H], [C, H],
{A, C}, A% and C? on the basis (4.1) in terms of summations over the coeﬁiciEﬁt$S,,

Afy’jv These summations can be evaluated by using the recurrence relations of appendix D,
where we give some meaningful examples for interested reader. With similar methods, we
evaluateB”, B"A, B"C on the basis (4.1). Collecting together all these results and quoting

only the non-zero quantities, we have
sinh2B/xz A2 1—-cosh®B./xz c2_ 1—-cosh®B./xz

A, C}= - T TN

{ J 2/xz 4z 4x
1 sinh2B./xz

A, Hl = -A1 h2B —_—C 4.5

[4, H] = SA(+ coshBy/xz) +x = - (4.5)
1 sinh2B./xz

C,Hl=—-—-C({1+cosh® —7——A.

[ ] 5 a+ Vxz) —z NS

When x and z go to zero, we get the algebraic relations of the usual one-dimensional
fermionic algebra.
Let us now build the coproduct. For any elemeghbf the dual algebra, it is defined by

(AX, ‘Bknﬁai J ®ﬁk/n5/ai,yj,) — (X, ,Bknﬁaiyjﬂk/n[ai’yj/).

In re-ordering the product on the right-hand side, we use the following recursively proved
relations:

fatons: »
o'yl B = 5 [(B+ 0t + )vaz) + (B = nGi +j)v/xz) [a'y’

1,/z\G-D/2 ' ' o i '
> (5) T BHni + pvE) = B—n + pv) oty 4)
wherei + j, i +1, j + 1 are taken mod 2.
Noting that

(B"(—=D, p*nta’y’) = 80808k (—D)'n!
(B"(-DH A, p*n'a’y’) = 818,08 (—D)'n!

(B"(-DHcC, B nta’y’) = 8i08j18km (—D'n!

we finally get

sinhB./
AA=10 A+ A® (=1 coshB/xz — xC ® (—D)H T2V
A/ XZ
AB=1QB+B®1
sinhB./xz
AC=18®C+C® (-1 coshB/xz —zA®(—1)HT 4.7)

AH=19 H+ H®1—zA® (—1)" (coshB./xz)A
—VxzA ® (=1 (sinhB/x2)C + /xzC ® (=17 (sinhB/x2)A
+xC ® (=1 (coshB/x7)C.
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(2°) Type 1l

In this case, we prove the following form afg*:

AB =T B0 @B 0" +THe B0 @B 0 a+ T2 Brna®p n'y.

The various commutators and anticommutators are again expressed on the basis (4.1) by
summations on the”*, ,, v = 0, 1, 2, which can be evaluated from the recurrence relations

rs;r's’?

over them much more easily than before.

We finally get
e 1 e’ — 1\?
(A.C) = A2=—x< ) c?—0
P 2 P
et —1 4.8
[A,H] = A —x C [C,H]=—C 48

[A,B]=[B,C]=[B,H]=0.
The coproduct is easily obtained by using the formulae
aft = B+pfa  ayp =B+ p) ay

X (4.9)
yB* =By — ;((ﬁ + p)* — B na
and we find
AM=10A+ AR (D! + ZC® 1— ) (-
p
AB=1®B+B®1 (4.10)
AC=1R®C+C® (-D¥
AH=19 H+ H®1—-xC® (-DcC.
(3) Type lll

The form of Ag¥ is even simpler than previously. Indeed we have
ABF =T B @B + T3k Ba®p n'y.

As the evaluations are very easy to do, we give the final results for both algebraic relations
and coproduct directly. We have

elr+toB _ 1

{A,C}=— = A’=C%?=0

pd 4.11
[A,H] = A [C,H] =—-C (4.11)
[A,B]=[B,C]=[B,H] =0

and
AM =A@ +10 A
AB=1®B+B®1
(4.12)

AC=CRe?-D"+1®C
AH=1QH+H®L
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5. Conclusion

5.1. The bosonic case

To get a deeper view of the quantum algebra associated with the type | bosonic quantum
group, let us consider its possible irreducible representation® é@mmutes with all other
generators, we can expect it to be a multiple of the iderBity wl.

Now, we have two cases to discuss.

(1) 1—ab F() # 0. Inthis case - abF (B) is an invertible operator in the representation
and we can introduce

, F'(B) ¢ F"(B) —e’B
A'=A—aH —
1—abF(B) ab l—abF(B)
e -1 F(B
C = _p FB) (5.1)
a 1—abF(B)
;L H
~ 1—abF(B)’
With this change of generators and according to (3.7) we get the commutation relations
F'(B F’
W F® _ F©
1—abF(B) 1—abF(w) (5.2)
[A/, H/] — A/ [(‘:/7 H/] — _C/
i.e. the commutation relations of the usual oscillator by introducing
F'(B
g 1B (5.3)
1—abF(B)

(2) 1—ab F) =0. Let us rewrite the algebra in such an irreducible representation. We
have

[A,C] = F(w)]
1
[C, H] = Ee-ac (5.4)

[A, H] = —aF'(o)H + ﬁ(F”(w) — )l

If we introduce

A
A=-H+——— (F'(w)— e C =¢e'c H = 5.5
+ asz’(w)( (@) ) aF'(w) (5-5)
from (3.7) we get
[A,Cl=1 [A,H = A [C',H=-C (5.6)

which is again identical to the usual oscillator algebra wiBeis the identity. However, it
should be noted that the roles 4fand H have to be exchanged with respect to the previous
case.

Furthermore, insofar asib is implicitly necessarily different from zero, these
representations disappear in the non-quantum limit. Therefore, they have to be seen
as supplementary representations ensuring that our quantum algebra is a true algebraic
deformation of the initial oscillator algebra.
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A similar circumstance does not happen for type Il, where the action of the deformation
can be seen only on the coproduct (3.14).

5.2. The fermionic case

The structure of the bialgebras defined respectively by (4.5) and (4.7), (4.8) and (4.10),
(4.11) and (4.12), is investigated in greater depth.

(1). In (4.5), let us define new generatots andC’ by the formulae

A’ = AcoshB./xz + C\/; sinhB+/xz
Z

(5.7)
¢’ = A\/i sinhB/xz + C coshB/xz.
Then we have
(4, cy= SBVEz -y, CoshBVxz—1 o, cOShByrz—1
s 4 4x (5.8)
[AH] = A [C',H] = —C'

all other commutators being zero. if z are not simultaneously equal to zero, it can be
shown from (5.8) that no element of the null square in the algebra exists that has the same
commutation relations withH as A’ and C’. This proves that our algebra is definitely
different from the one-dimensional fermionic algebra and is a true algebraic deformation
of it.

(2). If in (4.8), we introduce the new generataf by
xer -1
2 p

A=A (5.9)

we get the relations
e’ —1 erB —1)\?
(A, C}) = A? = —x ( ) c?=0
p

[A, H] = A’ [C,H]=—-C

all other commutators being zero. A similar argument as above is valid in this case and
leads to the same conclusion.

(3). Ifin (4.11), we introduce

' elrto)B _ 1
p+gq
we get the following algebraic relations:
{A,C} =B A’2=C?=0

[A,H] = A [C,H]=-C

all the other commutators being zero. This algebra is the non-deformed one-dimensional
fermionic oscillator algebra, i.e. the graded Lie algebkél/1).
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Nevertheless, the deformation appears in the coproduct which is now written in terms
of B’:
A=A 1+ (p+q)B) " (D +10 A
AB =19 B +B' ®1+(p+q)B®B
N (5.10)
AC=C® 1+ (p+gB)"" )" +18C
AH=1® H+HQ®L

It is worthwhile noting that the previous cases provide true algebraic deformations of
gl(1/1).
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Appendix A. Recurrence relation for Q::s’s/(n) defined by (3.5)

We can prove recurrently that
yn' =n"y —as'n" "tm? — ). (A1)
Therefore the relation

(v —san)n" =Y Q" ()y” (A2)
0

is true forr = 1. Now from (A.1) we derive

vfa) = fy —aG? = f'(n) (A3)
for any sufficiently regular functiorf (). So, we can write

’ r o o d o o o o ’
(y —sap) ™" = Z(QI?“ )y —a(m® - 77)(T77 Q. (n) —san Q™ (n))y’ :

0
This proves (A.2) for any € N and gives the recurrence relation

’ ’ d !
0L () = QU () — (a<n2 g+ asn) 05 ) (A4)
with the solution
r,s,s’ r—r’ d s s’
0. (n) = (r,>(—l) (a(nz — ) +asn> n. (A.5)
r dn
So, we immediately get
r,s,s’ r r—r'
0@ = (])-av (A86)

and in particular we have

Q:"O’S,(l) = (Sr,r/'
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Now, let us set

t,S,S’ _ E ( 2_ )g +S ! s
q _dn n n dy nlpn

If we remark that

d d r d d =1
((n2 - +sn> = ((nz — ) +sn) ((n2 My +sn> 7’
dn dn dn dn
d
+<(2n - 1)d— +s) <(n - 77)* +sn)
n

we get the following relation:
qt+l,s,s' — (S + 1)ql,x,x’ + st+l (A?)
the solution of which is given by
g =+ D'(s+s)—s"

Therefore, we finally obtain

erYT

n=1

(:/) (—a) " (s + D" " (s +5) — s (A.8)

Appendix B. Evaluation of the I'*

r,s,t;r' st u
(2°) Type | bosonic quantum group

(a) Recurrence foF} e
As the coproduct is a homomorphism, we have
AﬂkJrl Aﬂ A,B
From this we get a recurrence formula for the coefficidffts,... .., ., after re-ordering the

monomialsg” «* "' y* B and B a*n' B. It is done by using the following formulae deduced
recurrently from the commutation relations (2.11):

n"B = Bn" +naan" (B.1)
a"B = Ba" + na”’l(aaz + pa —b(n — 1)) (B.2)
n—1
y'B=By"+ Y Prmy". (B.3)
0

From (A.3), we obtain the following recurrence equation:
n+1 d
Py o) = P_y(n) —a(n® — n)fP (m

the solution of which is

) , d n—n'—1
Py = (=D (2)661”” 1((772 - n)dn) (n—1. (B.4)

Let us set

Pi(n) = Z n",," .
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Finally we get the following recurrence formula:

u"—u'

k+1 u” u' +k ’ ’ k
r S = E E T Upg s @@+ =D o g0

r,s,
u">u'+1u"=0
Nk

+p(S +s )Fr,s,t;r’,s’,t’, / b(S + 1)Frs tr' '+ 1,0 =1Lu
+b(s' + 1T¥ +r¥

rs,tr’s'+1,t" u’ r.s,tr’' =15t u

k

tat+s — 1)Fr s=Lt;r 8"t ' —b(s + 1)Fr,x-i—l,t—l;r/,x’,t’,u’

+b(s+1)Frs+1tr’s’t’u’+Fr Ls,t;r,s' 1, ’+Frs 10,8t -1 (B5)

with the convention thaF*

r,s,t;r' s’ tu

, with lower negative indices is zero.

(b) Formula (B.5) is the basic tool for calculating the summations involved in the expressions
of various commutators of the bosonic dual algebra on the basis (3.1). We give some
significant examples which appear iA,[C] and [A, H] for x = —a.

() X w8 0r000 X - From (B.5), we get

u’—u'
u u'u' pk u'
z :FOOtOOt’ - 2 : E : z :7'[ " 1—‘O,O,t;O,O,t’fu”’,u”x
t.t'u t.t o u>u'+1 uw"=0

”

u” —u'
g E ( E /// ) é FOOZOOt/ e
" ouw"zu'+1 Mu”=0 1,1

u

But, according to (B.4), we have

M—M

> au = PY (1) =0. (B.6)
o
Obviously as
0 ’
Z Iﬁo,o,t;o,o,w,wxu =1
t,t'u
we finally get
Z Fé,O,t;O,O,t’,u’xu = dro. (B.7)
t,t'u
(i) Y 0w 1T 01000 X" - From equations (B.5) and (B.6), we obtain
k+1 4 k ,
Z tFO,-E,t;O,O,I’,u’xu =-b Z 1_‘O,l.t;O,O,z’,u’xu . (BS)
t,t'u' t.t'u

But, from equation (B.5), we also have
k+1 k ! k !
Z Totro0raX' =P Z To1no0reXx" +a Z 160,400 wX"

t,t'u t,t'u t,t'u'
k u
+x § 0,000,

t,t'u

Using equations (B.7) and (B.8), we get
Z Fou 0.0/ uX =D Z Fé,l,t;O,O,t’,u"x —ab Z Fou 0.0 X" + X80

t,t'u t,t'u t,t'u
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So, we can write
3T 00w s = xR p)(L - 8i0) (B.9)

o
where the polynomial®*(p) verify
R(p)=1  R'(p)=
R**Y(p) = pR(p) — abR*(p) k=12,...
and finally, we obtain
Z 16 000w = —bxR2(p) (1= 8x0 — 8i). (B.11)

t,t'

To solve equation (B.10), we introduce

(B.10)

(o) yk
R(y) = ﬁRkw).
— k|

The recurrence relation gives the differential equation:

R"(y) — pR'(y) +abR(y) =

with the solution
e’y — ar2y
Ry =2 TP pry),
p1— P2
wherep;, p, are given by (3.9).
(i) 3, /v T8oro0rwt'x". From (B.5), we get

, U, 1, U U T

o

k+1 rou uu' u' k u'

2 :Fomoow rx 2 : § (E :”w u )x E :FO,O,I;O,O,Z/,u’x
t,t

t,t'u u u'>u'+1 Mu""=0

_bZFOOzOltu’x (B.12)

o
But, according to equation (B.4), we have

u’—u' d
o 7

mytu” = —PJ

s dn

So, the first term in the right-hand side of (B.12) reads:

¢ 7 u"\ 1k
. Z (& —a)" —x")G0r00ru =0

IR

Y £7 4
= (-1 (W)Cd . (B.13)
n=1

according to (B.7).
Now, from (B.5), we have

k+1 k r o k u'
§ :Fomou X =a § :FO,O,t;O,O,t’,u’tx +p E L6000 0%

t,t' t,t' t,t'
= re x" —ab &y
=P 0,0,1;0.1.r".u’ 0,0,t,O,l,t’, X
tt' tt'

This implies
Y Tooronmux’ =0 (B.14)
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since this is true fok = 0, 1. Therefore, we have
Z Fé,O,T:O.O,t’,Lﬂt/xu/ =0. (815)

t,t'u

vvvvvv

k+1 , K+l
Z(Fo,1,z;o,o,r/,ot —1100:01,¢,0)
t,t

=p Z(Fé,l.z;o,o,zuof/ — TG 010100 — CRH(P) (A = 8r0). (B.16)
t,t
Let us set
00 y"
Gy =), o Y Torno0rof = T60s01r.0 G0 =0.
0 ot

From (B.16), we deduce the differential equation:
G'(y) = pG(y) — cF'(y)
with the solution:
C
G(y)=—(F"(y) —e”
” = b( () )
from which the final result can easily be written.

(2°) Type Il bosonic quantum group

The recurrence relation for*

r,s,tr' s’ u

prove the following equations:
y"B=By" +qy"(L—8,0) +ncL—ny"*

a"B = Ba" + pa" (L — 8,0) +nb(1— )"t

, IS easier to obtain. Indeed, after we recurrently

we get
e = (P2—=80—3800) +q(L— 80T, 1w 06"+ DR i

—b(S/ + 1)F]r(,s,t;r’,s’+l,t’fl,u’ +b(s + 1)Fi]f,s+l,t;r’,s’,t’,u’

k / k
—b(S + 1)Fr,s+1,tfl;r’,s’,t’,u’ + C(u + 1)Fr,s,t;u’,r’,s’,t’,u’Jrl

/ k k k
—C(I/l + 1)Fr,s,r;r’,s’,t’—l,u’-&-l + Fr,x.t;r’—l,s/,t/,u’ + Fr—l,x,t;r’,x’,t’,u’

41k (B.17)

ris—=Lt;r 8"t u'—1
with the same convention as in (B.5).

We proceed as above to evaluate the various needed summations in taking (3.11) into
account as we perform the limit = 0. We illustrate the method by a unique example
concerning €, H].

Let us consided”, , 1T ,.00,.1- From equation (B.17), we have

k+1 k k
Z 1000001 =4 Z 6000010 Z 1010001 (B.18)
t,t

t,t t,t
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But, again from (B.17), we successively get
Z Féj,lt;o,o.w.l =(P+aq Z Fé,l,t;O,O.t’.l + Z Flé,o,z;o,o,ﬂ,o

t,t t,t t,t

k+1 _ _
> S thoore=0  k=0.1....

1t

This implies
PR =3 PR =+ - 80
0,0,#;0,0,¢,0 k0 0,1,7:0,0,¢',1 pT4q k0)-
t,t t,t

Let us set

k
X k
gx) = Z T E 11°0,0.1:0,0..1-

t,t

From equation (B.18), we obtain the differential equation

, elpta)x _ 9
g(x)=qgx) —b—-——r g0 =0.
p+q
The solution is
b elrtox _ 1 b
gy =—"— T — —(1-¢)

q p+gq pPq
from which the final result is easily written.

Appendix C. Proof of useful lemmas

First we consider type | bosonic quantum groups.
Lemma C.1Forw € N, we have
(B”, B*a‘n™y") = w!8ueodno. (C.1)

Proof . Equation (C.1) is true fow = 1 according to the definition oB. Let us assume
(C.1) is verified up to some. Since we have

(Bw+1, ﬁka[nmyn) — (Bw ® B, Aﬁkainmyn)
according to equations (3.6) and (A.6) we get
(B**Y, Bran™y™) = w! Y "Th 6,104 08c0800.

1t
From equation (B.5), we can write
k+1 _ k k
Z Fw,O,l;l,O,t’,O - Z l_‘w,O,t;O,O,t’,O + Z Fw—l.O,t:,l,O,t’,O' (CZ)
t,t' t,t t,t'
But, according to equations (B.5) and (B.7), we have
k+1 _ k _ k+1—w _
Z Fw.O,t;O,O,t’,O = Z wal,O,t;0,0,t’,O = Z FO,O,t;O,O,t’,O = Sk+1w-
t,t t,t t,t

Substituting this in (C.2) and solving the recurrence, we get:
Z Ty or1000= W+ Dy
1,1

which completes the proof. O
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Lemma C.2For w € N, we have
(€™, Ban™y") = w!808e08u-
Proof . We proceed recurrently as above. First, we have
€t praymy") = w! Z T6.0.:0.0..18¢08nw + w! Z T'6.0.:00..0500 Z AL
t,t' t,t u

According to (B.7), the first term in the right-hand side is zero. Moreover, it can easily be
proved that

Y OAL =+ DS

so that using (B.7) again, we get

(€t B n™y™) = (w 4 1)!8k0808n, w1
which completes the proof. O
Lemma C.3For w € N, we have

(CBY, a'y"y") = w!du8e08n1.
Proof . By definition

(CB", Ba'y"y") = (C® B". Ap*an"y")

=w! Y T§ 00050001

t,t

Using equations (B.5) and (B.7), we have
k+1 _ k _ k+1—w _
Z FO,O,t;w,O,r’,O - Z FO,O,z;w—l,o,t/,o = Z l_‘O,O,z;OA,O,t’,O = Sk+1,w

t,t t,t t,t
which completes the proof. ]

The same results are true for the type Il bosonic quantum group and can be similarly
proved by using (B.17) instead of (B.5). We leave the proof to the reader.

Appendix D. Recurrence relations and some examples of evaluation

By writing At = AB¥AB and re-ordering according to the algebraic relations (2.17)
with p = ¢ = 0 (i.e. the type | fermionic quantum group), we get

k+1ij _ kij k,ij N SE N Lo A
Frs:r’s/ - Iﬂrs;r/—l,s’ + 1_‘r—l,s:r’s/ + tj Ars;r/s’ + (XZ(J + 1) + zJ (l + 1))
1, A ki+l,j ki+1,j k,ij ki+1,j+1
X (é(Arx;r/s’ - Ar,x—Zj;r/,.v’—Zi) - Ar.v;r’,s’—l - Ar,s—l:r’s/
. . 1 ki+1,j ki+1,j ki+1,j ki+1,j
+(l + l)(,] + 1)21XZ(A”;,/S« - Ar,s—z;r'S/ArS;r/,s’—Z + Ar,s—z;r’,sl—z)' (Dl)

AL ARG AR +i(j+priiti

rsir's’ rsir’'—=1,s r—21,s:r's’ rs;r's’

+l.j%x(rk,i+l,j _ Fk,i+l,j ) + (l + 1)(] + 1)%Z(l-,k,i+l,j _ Iﬂk,i+l,j )

rs;r's’ rs;r’,s'—2 rs;r's’ r,s—2;r's’

(G +Dj+2iG+ D) = (xiG+ D +2G + D )Tt

. .1 k,i+1,j k,i+1,j k.i+1,j k,i+1,j
+(l + 1)J Z1XZ(Frs;r’s’ - Frs;r’,s’—Z - Fr,:—Z;r’s’ + Fr,s—Z;r/,s’—Z)’ (D2)
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By convention, the coefficients with negative lower indices are equal to zeroj ant
j + 1 are taken mod 2.

We now give some examples of evaluation:
() X,y Toor- From the recurrence, we readily get

k+1,00 _ _
ZFMS = k=0,1,...
so that we have
k,00
Z FOS 0Os’
(ii) From this result, we deduce
k,00 k00 _
Z 1—‘ls;Os’ = Z 1—‘Os;ls’ - 87‘1
s,s’ s,s’
since the recurrence gives
k+1,00 k,00 k+1,00
Z 1—‘ls Os’ Z FOS os' = Z FOs;ls’ .
s,s’ s,s’

(iii) A little more computation is needed to evaluate the summations involved in the
anticommutato{ A, C}. Indeed, we have successively

k+1,10 _ k.10 k.01
Z AOs;Os’ =80 —2 Z FOX,OS’ - X Z FOs;Os’
s, 5,8’ s,s’
k+1,10 _ k.10 k.01
Z 1—‘Os;Os’ =X Z 1—‘Os,Os’ —X Z AOX;OX’ (DS)
s,s’ 5,8 s,
k+1,01 _ k.10 k.01
Z Agsoy =2 Z Fosoy =% Z Agy.os
s,s’ s,s’ 5,8’
Let us define
k,10 k,01
Xy =~z Z Fosloy — Z Fosos
5,8’
We have the recurrence relation
Xip1 = 2x28k1 + 4xz X1
with the initial values
Xo=X.1=1
the solution of which is given by
X = 2@x2)*2(1+ (=DX) — L8k

From this result, we readily deduce the values of

Z A](;Yoéﬁ‘ Z F]C()vlgv Z Féfo(:)L\'/ and Z A]C()vlgv’ .

s,s’ s,s’ 5,8’ 5,8’

The other evaluations are left to the reader.
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